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Abstract—Affordance grounding aims to localize the interac-
tion regions for the manipulated objects in the scene image ac-
cording to given instructions, which is essential for Embodied AI
and manipulation tasks. A key challenge in affordance grounding
is enabling the agent to understand human instructions, identify
usable tools in the environment, and determine how to use
them to complete the task. Most recent works primarily support
simple action labels as input instructions for localizing affordance
regions, failing to capture complex human objectives. Moreover,
these approaches typically identify affordance regions of only a
single object in object-centric images, ignoring the object context
and struggling to localize affordance regions of multiple objects
in complex scenes for practical applications. To address this
concern, for the first time, we introduce a new task of affordance
grounding based on natural language instructions, extending
it from previously using simple labels for complex human
instructions. For this new task, we propose a new framework,
WorldAfford. We design a novel Affordance Reasoning Chain-
of-Thought Prompting to reason about affordance knowledge
from LLMs more precisely and logically. Subsequently, we use
SAM and CLIP to localize the objects related to the affordance
knowledge in the image. We identify the affordance regions of
the objects through an affordance region localization module.
To benchmark this new task and validate our framework,
an affordance grounding dataset, LLMaFF, is constructed. We
conduct extensive experiments to verify that WorldAfford per-
forms state-of-the-art on the previous AGD20K and the new
LLMaFF dataset. In particular, WorldAfford can localize the
affordance regions of multiple objects and provide an alternative
when objects in the environment cannot fully match the given
instruction. Our Project page: https://worldafford.github.io/.

Index Terms—affordance grounding, natural language instruc-
tions, llms

I. INTRODUCTION

Embodied agents can interact with a physical environment

and potentially perform heavy tasks based on human in-

structions. In order for robots to better manipulate objects

in complex scenes, it is urgent to understand which part of

the object is the interaction region. Affordance grounding,

which aims to localize potential interaction regions for the

manipulated objects in the scene image depending on the given

instruction, can provide a new experience for Embodied AI

and has the potential to significantly increase efficiency and

flexibility. As a result, it has recently attracted a significant

amount of attention [1]–[3].

A critical challenge in affordance grounding is instruction

comprehension, which means that the embodied agent should

understand the human instructions and reason about the actions

it is going to perform, which emphasizes active interaction

between humans and their environment rather than passive

detection. Furthermore, the agent should analyze which tools

in the usage environment can accomplish the given instructions

and localize the interaction regions (i.e., affordance regions)

on the objects. These challenges are expected to be alleviated

through using large-scale vision-language foundation models.

Unfortunately, the currently available models [4]–[7] have not

performed satisfactorily on this particular task.

Most recent works [1]–[3] attempt to transfer knowledge

from exocentric images of an object in an active state to

egocentric images where the object is not being used. They

have achieved impressive progress, making dataset collection

easier and learning that the affordance region of an object

changes dynamically depending on the different given in-

structions. Nevertheless, current approaches can only support

simple action labels (e.g., “catch” shown in Fig. 1) as

input instructions, which cannot express complex human goals.

Besides, these methods can only identify the affordance region

of a single object in object-centric images, overlook object

context, and still fall short in localizing the affordance regions

of multiple objects in complex scene images for practical

applications in the real world. In this paper, for the first time,

we introduce a new task of affordance grounding based on

natural language instructions, extending affordance grounding

from previously using simple action labels to complex natural

language instructions. This new task moves toward real-world

applications with significant implications for Embodied AI.

For this task, we propose a novel framework, WorldAfford,

which integrates the large language model (LLM), Segment

Anything model (SAM) [8], CLIP [7] and the affordance

region localization module. We first use the LLM to process

the natural language instruction. To reason about affordance

knowledge from the LLM more precisely and logically, we de-

sign a novel Affordance Reasoning Chain-of-Thought Prompt-

ing (ARCoT) including Object-Oriented Reasoning Prompting

and Action-Oriented Reasoning Prompting. Subsequently, we

employ SAM and CLIP to segment and select the objects

associated with the actions inferred by the LLM. Moreover,

a Weighted Context Broadcasting module (WCB) is proposed

and integrated into the affordance region localization module.

It allows our framework to focus on more informative objects

and to identify affordance regions of multiple objects. To

benchmark the new task and validate our framework, we

constructed a new dataset, LLMaFF, containing real-world

images with natural language instructions and manually la-
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“An artist wants to sketch 
designs on paper. “

“Precision and speed were 
key to install the trim.”

“I'd like to rest on a bed, but 
there isn't one available.”

“write” “catch” “hold”

Fig. 1: Different from previous works only using naı̈ve action

labels for affordance grounding, WorldAfford can derive affor-

dance knowledge from LLMs and precisely localize the affor-

dance regions corresponding to natural language instructions.

In this way, our framework can work effectively in complex

open-world environments. The results in the second row are

from Cross-view-AG+ [3].

beled affordance maps. We train our model on AGD20K using

image-level labels as supervision without expensive pixel-level

annotation. All LLMaFF images and language instructions

are unseen in training. Experimental results demonstrate that

our framework outperforms the previous methods both on the

existing AGD20K [1] dataset and the new LLMaFF dataset.

Our main contributions can be summarized as follows:

• We introduce a new task of affordance grounding based

on natural language instructions, extending affordance

grounding from using simple action labels to complex

natural language instructions.

• We propose a framework for this new task named

WorldAfford, which integrates the LLM and other vision

models. To reason about affordance knowledge from

LLMs, we introduce an Affordance Reasoning Chain-of-

Thought Prompting. In addition, we propose a Weighted

Context Broadcasting module, allowing WorldAfford to

localize affordance regions of multiple objects.

• A new dataset LLMaFF is constructed to benchmark the

new task.

• We conduct extensive experiments to validate that our

model performs state-of-the-art on both the AGD20K

dataset and our new LLMaFF dataset.

II. RELATED WORK

A. Affordance grounding

Visual affordance grounding has been intensively explored

in the fields of robotics and computer vision [9]–[13]. Tra-

ditional approaches [14] mainly learn the affordance through

fully supervised learning. Luo et al. [1] propose a Cross-view-

AG knowledge transfer framework for affordance grounding,

in which the affordance knowledge is acquired from exocentric

human-object interactions, and transfer to egocentric images.

Li et al. [2] extract object-related information from exocentric

images and match it to the objects to localize the affordance

regions. However, such methods use only naive action labels

for affordance grounding. In this work, we use flexible natural

language as supervision to guide agents in localizing affor-

dance regions of multiple objects in complex scenes images.

B. Large language models and Vision foundation models for
affordance grounding

Some studies [15], [16] have used large language models

(LLMs) to guide robotic arm object grasping, focusing on

basic object perception without addressing fine-grained shapes,

functions, or uses. Our work differs by employing LLMs with

an affordance reasoning Chain-of-Thought (ARCoT) method

to interpret open-world human instructions and reason about

diverse objects. Recent studies [17] demonstrate Chain-of-

Thought (CoT) can significantly enhance LLM performance

on complex reasoning tasks.

Vision-language models have also shown promise in

robotics [18], [19]. Some works [20], [21] detect affordances

in 3D point clouds but lack human instructions, generalization

to unseen objects, and rely on manual annotation. Li et al. [22]

address one-shot affordance learning. We, however, leverage

CLIP for semantic understanding and SAM for spatial recog-

nition to identify objects based on language input, highlighting

the synergy between LLM-based reasoning and vision models

for affordance grounding.

C. Affordance Grounding Dataset

Affordance grounding [1]–[3], [9], [14], [23] has primarily

focused on datasets like AGD20K [1], which target single

actionable object scenarios. More recently, Hadjivelichkov et
al. [24] introduced the UMD-i dataset for one-shot affordance

learning with pixel-level labels, while Nguyen et al. [25]

proposed the IIT-AFF dataset, which lacks semantic affordance

information and relies solely on image inputs. To overcome

these limitations, we present the LLMaFF dataset.

III. TASK DEFINITION AND LLMAFF DATASET

Given an image I and a natural language instruction t,
affordance grounding based on natural language instructions

aims to localize the interaction regions of objects in the scene

image and the instruction can be completed through these

interactions. Compared to the setting in previous works [1]–

[3], [24], affordance grounding based on natural language

instructions is more oriented towards practical applications in

the real world since there is no restriction on the number of

objects in the image and complexity of the input instructions.

To facilitate and benchmark this new task, we construct a

new dataset, LLMaFF, consisting of 550 complex environ-

mental images with natural language instructions and man-

ually labelled affordance maps. The data collection pipeline

is shown in Fig. 2. The source images of our dataset are

primarily sampled from IIT-AFF [25]. Due to the limited
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Fig. 2: Data Collection Pipeline for our WorldAfford bench-

mark.

object categories of IIT-AFF, we augment the dataset with the

images sampled from Ego4D [26] and the Internet.

Fig. 3: Statistics of objects and instructions in WorldAfford.

(a) Distribution of objects by affordance type. (b) Distribution

of language instructions

AGD20K [1] annotates the affordance regions with sparse

points and applies a Gaussian kernel to generate ground truth.

In contrast, we employ dense points to annotate the affordance

map of multiple objects based on the language instructions,

which requires careful identification of the objects and their

interactions. We find that the density and distribution of the

points have a significant impact on the labelling results, thus

ensuring a uniform distribution of annotation points across

multiple objects is crucial to avoid certain regions in the

affordance map appearing blank or with faint heat.

“I’d like to rest on 
a bed, but there 
isn’t one available.”

Fig. 4: Framework of WorldAfford.

Based on the affordance of objects in the environment, we

categorized them into eight types: handheld objects (1837),

operable objects (2474), situable objects (1341), containable

objects (1660), supportive objects (2314), decorative objects

(2179), and informative objects (1457). We also conducted a

statistical analysis of the length of human language instruc-

tions in the dataset, as shown in Fig. 3.

IV. PROPOSED APPROACH

A. WorldAfford Framework

We propose WorldAfford as a general framework for affor-

dance grounding that incorporates complex instruction under-

standing and multi-object affordance localization with minimal

training cost. First, we use the LLM [27] to analyze instruc-

tions and derive affordance knowledge through affordance

reasoning chain-of-thought prompting. Then, SAM [8] and

CLIP [7] enable zero-shot multi-object grounding, segment-

ing and selecting objects for sub-actions identified by the

LLM. We further integrate a Weighted Context Broadcasting

(WCB) into the affordance region localization module for

precise localization of multiple objects’ affordance regions.

The WorldAfford framework is shown in Fig. 4.

B. Affordance Reasoning Chain-of-Thought Prompting
Rather than relying on direct inference, our approach em-

ploys a straightforward and effective chain-of-thought prompt-

ing to enhance the capabilities of LLMs in affordance rea-

soning, as shown in Fig. 5. The proposed chain-of-thought

prompting consists of two primary strategies: (1) object-
oriented reasoning prompting, and (2) action-oriented rea-
soning prompting.

1) Object-Oriented Reasoning Prompting.: We first utilize

the LLM to reason about the possible objects that can afford

the given instruction. Considering that multiple objects are

likely to be necessary for completing the instruction, the LLM

is requested to output a set of object categories O:

O = LLM(k, t, pobj), (1)

where k indicates the size of the object set and t denotes

the given natural language instruction. The prompt pobj for

object-oriented reasoning is specifically designed as follows:

Prompt: What are the [#k] most common objects that can be used if [#t]?
Output: Chair..., Hammock..., Blanket and Pillows...

The object-oriented reasoning prompts the LLM to provide

diverse objects suitable for an action. Moreover, it associates

alternative tools in case the best tool does not exist in the

environment, which facilitates the accomplishment of the

instruction. These inferred object categories from the LLM are

further utilized for subsequent action-oriented reasoning. We

Fig. 5: The affordance reasoning Chain-of-Thought prompting.

designed a filter function based on the large model’s output

about object descriptions to filter out excessive explanatory

text, which sometimes includes irrelevant objects, hindering

the subsequent object search.
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2) Action-Oriented Reasoning Prompting.: Different from

previous work on locating the affordance for single action

labels, to address the complex natural language instructions,

we utilize the powerful prior knowledge of the LLM to

decompose a complex instruction into several simple sub-

actions. Given a pre-defined predicate list, we prompt the LLM

to select the appropriate predicates from it and assign these

predicates to the objects in the object set O. A set of sub-

actions A is generated as follows:

A = LLM(O, lp, t, pact), (2)

where lp indicates the pre-defined predicate list and t denotes

the given instruction. Each sub-action consists of a predicate

and an object. The prompt pact for action-oriented reasoning

is specifically designed as follows:

Prompt: Select skills from [#lp] to interact with the above [#O] to help me

if [#t]?

Output: sit on the chair..., lie on the hammock..., hold the blanket and

pillows...

The inferred sub-actions from the LLM are further utilized

as the input of the following affordance region localization

module. We use the LLM to extract object-level knowledge

and aggregate action-level knowledge. In the inference process

of the LLM, irrelevant information in the natural language

instruction is ignored and the highly abstract instruction is

transformed into a series of executable sub-actions. The pow-

erful reasoning ability and adaptive results of the affordance

reasoning chain-of-thought facilitate the subsequent zero-shot

object grounding and the affordance region localization.

C. Zero-shot Multiple Object Grounding

To integrate the affordance knowledge provided by the

LLM with visual information about the environment, our ap-

proach leverages the capabilities of Segment Anything Model

(SAM) [8] and CLIP [7] to effectively ground the relevant

objects in the scene image according to the given natural

language instruction. The impressive zero-shot performance of

SAM and CLIP enables our framework to precisely localize

objects across the open world without the need for extensive

and expensive training on large-scale datasets.

Initially, SAM produces N segmentation masks for the

input image. These masks, while precisely segmented, lack

semantic labels and unavoidably contain irrelevant objects.

In order to obtain the object masks that are relevant to the

given instruction, CLIP is integrated to compute the similarity

between the visual appearance of the masks and the object

categories provided by the LLM. We extract the corresponding

regions from the original image I based on the segmentation

masks. Subsequently, the cropped regions m are encoded

by the CLIP image encoder Eimage while the textual object

categories o are encoded by the CLIP text encoder Etext. The

probability p of the mask being classified as the i-th object

category can be formulated as:

p =
exp(sim(Eimage(m),Etext(oi))/α)∑

oi∈O exp(sim(Eimage(m),Etext(oi))/α)
, (3)

where sim(, ) denotes the cosine similarity function and O
indicates the set of object categories from the LLM. The

scaling factor α is set to 0.1 in practice. We establish a

boundary to determine whether the masks from SAM are valid.

The masks with probability p above the boundary are identified

as valid masks. With these active masks, we construct a full-

view segmentation mask in which the region covered by the

valid masks is viewed as foreground, while the remaining area

is considered as background. This full-view mask is the same

size as the input image and is further used for affordance

region localization.

D. Affordance Region Localization

To localize the affordance region of the objects in the

image corresponding to the given instruction, we employ

LOCATE [2] and enhance the grounding performance through

two crucial improvements: (1) We use the full-view mask

resulting from zero-shot multi-object grounding to preserve the

foreground and mask off the background as the input, rather

than the entire image. (2) We propose a weighted context

broadcasting (WCB) module, seamlessly integrating it into

DINO-ViT [28] to enable the model to prioritize informative

objects. With these improvements, our approach outperforms

the original LOCATE and can localize multiple affordance

regions with the knowledge provided by the LLM.

We utilize the full-view mask from zero-shot multi-object

grounding to mask off the irrelevant objects in the image.

The relevant objects are preserved and the image is forwarded

into DINO-ViT to extract deep part-aware features. We design

a Weighted Context Broadcasting (WCB) module inspired

by [29] and incorporate it into DINO-ViT as demonstrated in

Fig. 4. Given a sequence of N patch tokens, the WCB module

combines the average context tokens with the input tokens in

a weighted manner as follows:

WCB(xi) = xi ∗ β +
1

N

N∑

j=1

xj ∗ (1− β), (4)

where the weight β is an empirically determined hyperparam-

eter. In order to improve the model’s capability to perceive

multiple objects, it is expected that the attention maps in the

self-attention modules of DINO-ViT are dense rather than

sparse. It has been discussed in [29] that aggregating the

average context token can facilitate the self-attention modules

to learn dense attention maps. However, such simple aggre-

gation makes training difficult since the target attention is

unknown and uncertain. To solve this issue, we introduce a

weight to balance the aggregation. With the proposed WCB,

the target attention is easier to learn and the model can focus

on more informative objects. The experiment in section V-C

also demonstrates that our approach outperforms the previous

works [3] in terms of affordance grounding for objects.

The feature maps generated by DINO-ViT are further

refined by a transformation layer including a feed-forward

layer and two subsequent convolutional layers. We follow

the training strategy of LOCATE [2] to transfer affordance
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TABLE I: Comparison of WorldAfford with other state-of-

the-art affordance grounding methods on AGD20K. The best

numbers are highlighted in bold.

Approach Input Instruction KLD↓ SIM↑ NSS↑
Hotspots [23] Action Label 1.773 0.278 0.615

Cross-view-AG [1] Action Label 1.538 0.334 0.927
Affcorr [24] Action Label 1.407 0.359 1.026
LOCATE [2] Action Label 1.226 0.401 1.177

Cross-view-AG+ [3] Action Label 1.213 0.403 1.242
WorldAfford(ours) Action Label 1.201 0.406 1.255

TABLE II: Comparison on LLMaFF dataset. We manually

select labels for the other methods to comparison with them.

WorldAfford outperforms all previous methods across all

evaluation metrics. The best results are highlighted in bold.

Approach Input Instruction KLD↓ SIM↑ NSS↑
Cross-view-AG+ [3] Action Label 2.927 0.123 -0.194
Cross-view-AG [1] Action Label 2.887 0.119 0.118

LOCATE [2] Action Label 1.958 0.212 1.713
WorldAfford (ours) Natural Language 1.163 0.386 2.819

knowledge from exocentric images to egocentric images. To

predict the affordance maps, a convolutional layer with a

window size of 1 × 1 is utilized to project the channel

number to the total number of the action categories in the

pre-defined predicate list lp. We aggregate the affordance maps

corresponding to the action categories provided by the LLM

and normalized them to limit the activation values in the map

between 0 and 1 as the final output.

V. EXPERIMENTS

A. Datasets and Evaluation Metrics

We conduct experiments on two datasets: AGD20K [1],

which includes 20,061 demonstration images and 6,060 object

images for training. We evaluate our method on its test set

of 1,675 images, focusing on affordance grounding guided

by single action labels. Additionally, we use our proposed

LLMaFF dataset, consisting of 550 complex environment im-

ages with natural language instructions and affordance maps.

This dataset allows us to assess our method’s performance in

affordance grounding based on natural language instructions.

Similar to [1], we employ KLD, SIM, and NSS metrics

to quantify the correspondence between predicted affordance

maps and ground truth. Only the affordance region localization

module is trained, while other modules remain frozen. Training

occurs solely on AGD20K, following baseline settings.

B. Implementation Details.

We use GPT-4 [27] as the large language model, while both

the CLIP [7] and the Segment Anything Model (SAM) [8]

implement object matching and segmentation in a zero-shot

fashion. The affordance information is extracted from the

output of the large language model by removing most of the

irrelevant text to allow the CLIP to more accurately localize

the position of objects. The affordance region localization

module is trained on a RTX 3090 GPU. We load the pre-

trained DINO-ViT [28] model and finetune the features it

extracts from images. We set the weight β to 0.88, and the

number k in eq. (1) is set to 3. We use a learning rate of

0.005, a decay factor of 5e-4, a batch size of 16, and train the

affordance region localization module for 35 epochs.

C. Quantitative results

We validate WorldAfford on the AGD20K dataset, com-

monly used in affordance grounding approaches [1]–[3], which

typically use simple action labels for single-object affordance

localization in object-centric images. Given WorldAfford’s

reliance on natural language instructions, direct comparison

is challenging.

To address this, we input only action labels into the affor-

dance region localization module for comparison with these

approaches. Results in TABLE I demonstrate our approach

outperforms previous methods even in this simplified setup,

establishing a new state-of-the-art in affordance grounding.

The weighted context broadcasting module enhances object-

focused information processing, improving affordance region

identification. We further evaluate our method on the LLMaFF

Fig. 6: Visual comparison on the AGD20K dataset. Compared

to previous methods, our method can infer more precise

affordance maps.

dataset. Since previous methods cannot handle textual instruc-

tions directly, we manually select action labels for comparison.

Results in TABLE II show our method effectively localizes

affordance regions in complex scene images.

Cross-view-AG+ achieves strong results on AGD20K but

struggles on LLMaFF, indicated by a negative NSS score (-

0.194), suggesting challenges in adapting to complex tasks

and potential overfitting to AGD20K. Cross-view-AG and LO-

CATE also demonstrate decreased performance on LLMaFF,

highlighting their limitations in complex scene affordance

localization.

D. Qualitative results

Qualitative comparisons on AGD20K are shown in Fig. 6.

Cross-view-AG tends to produce overly large affordance re-
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gions, sometimes including irrelevant areas. LOCATE predicts

smaller regions but often misses parts of the affordance re-

gion. Cross-view-AG+ identifies regions associated with action

labels but lacks accuracy. In contrast, WorldAfford achieves

state-of-the-art performance, providing sharper and more ac-

curate results. The weighted context broadcasting module

(WCB) enhances focus on informative objects, improving

object knowledge and localization accuracy.

They want to quickly nail 
the fence panels 
together.

He examines the grip of 
his racket, making sure 
it feels comfortable in 
his hand.

My brother needs a tool 
that can withstand daily 
use for framing houses 
and nailing down 
hardwood floors.

A fitness coach is 
working out at the gym, 
and he needs to record 
and analyze his training 
data.

My car's engine is 
broken, and I want to 
get it repaired.

She need a pot to 
prepare dinner for her 
family.

Fig. 7: Visual comparison on the LLMaFF dataset. We man-

ually assign labels to other methods since they cannot adopt

the textual input. The labels, ”swing”, ”carry”, ”catch”, ”pick

up”, ”catch”, and ”carry” correspond to the first through sixth

rows respectively.

Fig. 7 displays results on the LLMaFF dataset. Cross-

view-AG+ struggles to identify affordance regions of multiple

objects, leading to disordered color distributions and ineffec-

tive visual information. Cross-view-AG shows some success

in capturing object information but is biased toward objects

with more training samples. LOCATE captures affordance for

a few objects but may activate regions of irrelevant objects or

interpret multiple objects as one. In comparison, WorldAfford

predicts more consistent affordance maps aligned with natural

language instructions, offering accurate localization of multi-

ple object affordance regions and richer visual information.

1) Results on complex language instructions: We address

the challenge of affordance grounding with complex language

instructions, as depicted in Fig. 8. Unlike simpler instruc-

tions, these require deeper human knowledge, highlighting

our method’s flexibility and creativity. WorldAfford effectively

identifies intricate affordance regions, exemplifying object

interactions such as using a knife and an apple for slicing. This

provides detailed visual information to enhance the agent’s

ability in complex tasks. Our approach systematically activates

affordance regions for tasks like building a chair, including

sawing, measuring, and assembling. This advancement opens

new avenues for robotics and AI applications, enriching agent-

environment interactions significantly.

Fig. 8: Affordance results based on difficult language instruc-

tions. While previous methods struggle to infer from difficult

language instructions, our method demonstrates the capability

to comprehend such instructions and accurately identify the

affordance regions of multiple objects.

TABLE III: Generalization ability comparison of WorldAfford

with other state-of-the-art affordance grounding methods on

AGD20K.

Approach Input Instruction KLD↓ SIM↑ NSS↑
Hotspots [23] Action Label 1.994 0.237 0.577

Cross-view-AG [1] Action Label 1.787 0.285 0.829
Affcorr [24] Action Label 1.618 0.348 1.021
LOCATE [2] Action Label 1.405 0.372 1.157

WorldAfford(ours) Action Label 1.393 0.38 1.225

E. Generalization ability and learnable parameters

To evaluate the generalization ability of our method, we add

the results of the unseen test on AGD20K, which is shown

in TABLE III. Additionally, all LLMaFF images, including

various scenes and many object categories such as nail gun,

smartwatch and so on, are unseen in training, which also

demonstrates the the superior generalization ability of our

method. We use the the knowledge of foundation models, the

training cost is very low, and the comparison of learnable

parameters: 120.03M(Cross-view-AG)/82.27M (Cross-view-

AG+)/6.5M (LOCATE)/6.5M (WorldAfford).

TABLE IV: Ablation results of the proposed modules. LMA

denotes the action information associated with the manipulated

objects inferred from the LLM. WCB indicates the weighted

context broadcasting module. LMO represents the object in-

formation inferred from the LLM.

LMA WCB LMO KLD↓ SIM↑ NSS↑
3.073 0.105 -0.059

� 2.729 0.114 0.428
� 2.768 0.124 0.303
� � 2.335 0.155 0.981

� � 2.336 0.180 1.081
� � 1.700 0.256 2.325
� � � 1.163 0.386 2.819

TABLE V: The results of using entire images as input and

masking off irrelevant objects on LLMaFF.

Input KLD↓ SIM↑ NSS↑
entire image 2.752 0.134 0.27

mask off 1.163 0.386 2.819
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F. Ablation Study

We conduct the ablative experiments on the LLMaFF

dataset to validate the effectiveness of the affordance reasoning

chain-of thought prompting(ARCoT). The results shown in

TABLE IV demonstrate that the object information and the

action information derived from the LLM via our affordance

reasoning chain-of-thought prompting (ARCoT) can both im-

prove the performance for the task of affordance grounding

based on language instructions. We also validate that the pro-

posed WCB module can enhance the perception of affordance

regions by enabling the model to focus on more informative

objects. Overall, our contributions significantly improve the

affordance grounding capabilities of the model and establish a

new state-of-the-art performance in the affordance grounding

based on natural language instructions task. To verify our

adjustments for masking off irrelevant objects, we conduct

experiments on LLMaFF, the results is shown in TABLE V.

VI. CONCLUSION

In this paper, we introduce a new task of affordance

grounding based on natural language instructions and propose

a novel framework, WorldAfford. Our framework uses LLMs

to process natural language instructions and employs SAM

and CLIP for object segmentation and selection. We further

propose a Weighted Context Broadcasting module, allowing

WorldAfford to localize affordance regions of multiple ob-

jects. Additionally, we present a new dataset, LLMaFF, to

benchmark this task. The experimental results demonstrate that

WorldAfford outperforms the other state-of-the-art methods

for affordance grounding on both the AGD20K dataset and

the new LLMaFF dataset.

REFERENCES

[1] H. Luo, W. Zhai, J. Zhang, Y. Cao, and D. Tao, “Learning affordance
grounding from exocentric images,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2022, pp.
2252–2261.

[2] G. Li, V. Jampani, D. Sun, and L. Sevilla-Lara, “Locate: Localize and
transfer object parts for weakly supervised affordance grounding,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2023, pp. 10 922–10 931.

[3] H. Luo, W. Zhai, J. Zhang, Y. Cao, and D. Tao, “Grounded affordance
from exocentric view,” International Journal of Computer Vision, pp.
1–25, 2023.

[4] J. Li, D. Li, C. Xiong, and S. Hoi, “Blip: Bootstrapping language-image
pre-training for unified vision-language understanding and generation,”
in International Conference on Machine Learning. PMLR, 2022, pp.
12 888–12 900.

[5] H. Liu, C. Li, Q. Wu, and Y. J. Lee, “Visual instruction tuning,” in
NeurIPS, 2023.

[6] Y. Cong, W. Liao, B. Rosenhahn, and M. Y. Yang, “Learning similarity
between scene graphs and images with transformers,” arXiv preprint
arXiv:2304.00590, 2023.

[7] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal,
G. Sastry, A. Askell, P. Mishkin, J. Clark et al., “Learning transferable
visual models from natural language supervision,” in International
conference on machine learning. PMLR, 2021, pp. 8748–8763.

[8] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson,
T. Xiao, S. Whitehead, A. C. Berg, W.-Y. Lo et al., “Segment anything,”
arXiv preprint arXiv:2304.02643, 2023.

[9] H. Luo, W. Zhai, J. Zhang, Y. Cao, and D. Tao, “Learning visual
affordance grounding from demonstration videos,” IEEE Transactions
on Neural Networks and Learning Systems, 2023.

[10] Z. Zhou, S. Wang, Z. Chen, M. Cai, and Z. Kan, “A novel framework
for improved grasping of thin and stacked objects,” IEEE Transactions
on Artificial Intelligence, 2023.

[11] ——, “A robotic visual grasping design: Rethinking convolution neural
network with high-resolutions,” arXiv preprint arXiv:2209.07459, 2022.

[12] S. Wang, Z. Zhou, and Z. Kan, “When transformer meets robotic
grasping: Exploits context for efficient grasp detection,” IEEE robotics
and automation letters, vol. 7, no. 3, pp. 8170–8177, 2022.

[13] S. Egami, S. Nishimura, and K. Fukuda, “A framework for constructing
and augmenting knowledge graphs using virtual space: Towards analysis
of daily activities,” in 2021 IEEE 33rd international conference on tools
with artificial intelligence (ICTAI). IEEE, 2021, pp. 1226–1230.

[14] K. Fang, T.-L. Wu, D. Yang, S. Savarese, and J. J. Lim, “Demo2vec:
Reasoning object affordances from online videos,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2018,
pp. 2139–2147.

[15] W. Huang, C. Wang, R. Zhang, Y. Li, J. Wu, and L. Fei-Fei, “Voxposer:
Composable 3d value maps for robotic manipulation with language
models,” arXiv preprint arXiv:2307.05973, 2023.

[16] M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David,
C. Finn, C. Fu, K. Gopalakrishnan, K. Hausman et al., “Do as i can,
not as i say: Grounding language in robotic affordances,” arXiv preprint
arXiv:2204.01691, 2022.

[17] Z. Li, B. Peng, P. He, M. Galley, J. Gao, and X. Yan, “Guiding
large language models via directional stimulus prompting,” Advances
in Neural Information Processing Systems, vol. 36, 2024.

[18] S. Huang, Z. Jiang, H. Dong, Y. Qiao, P. Gao, and H. Li, “Instruct2act:
Mapping multi-modality instructions to robotic actions with large lan-
guage model,” arXiv preprint arXiv:2305.11176, 2023.

[19] M. Khan, Y. Qiu, Y. Cong, J. Abu-Khalaf, D. Suter, and B. Rosen-
hahn, “Segment any object model (saom): Real-to-simulation fine-tuning
strategy for multi-class multi-instance segmentation,” arXiv preprint
arXiv:2403.10780, 2024.

[20] T. Nguyen, M. N. Vu, A. Vuong, D. Nguyen, T. Vo, N. Le, and
A. Nguyen, “Open-vocabulary affordance detection in 3d point clouds,”
in 2023 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2023, pp. 5692–5698.

[21] T. Van Vo, M. N. Vu, B. Huang, T. Nguyen, N. Le, T. Vo, and A. Nguyen,
“Open-vocabulary affordance detection using knowledge distillation and
text-point correlation,” arXiv preprint arXiv:2309.10932, 2023.

[22] G. Li, D. Sun, L. Sevilla-Lara, and V. Jampani, “One-shot
open affordance learning with foundation models,” arXiv preprint
arXiv:2311.17776, 2023.

[23] T. Nagarajan, C. Feichtenhofer, and K. Grauman, “Grounded human-
object interaction hotspots from video,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2019, pp. 8688–8697.

[24] D. Hadjivelichkov, S. Zwane, L. Agapito, M. P. Deisenroth, and
D. Kanoulas, “One-shot transfer of affordance regions? affcorrs!” in
Conference on Robot Learning. PMLR, 2023, pp. 550–560.

[25] A. Nguyen, D. Kanoulas, D. Caldwell, and N. Tsagarakis, “Object-based
affordances detection with convolutional neural networks and dense
conditional random fields,” 09 2017.

[26] K. Grauman, A. Westbury, E. Byrne, Z. Chavis, A. Furnari, R. Girdhar,
J. Hamburger, H. Jiang, M. Liu, X. Liu et al., “Ego4d: Around the world
in 3,000 hours of egocentric video,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2022, pp.
18 995–19 012.

[27] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman,
D. Almeida, J. Altenschmidt, S. Altman, S. Anadkat et al., “Gpt-4
technical report,” arXiv preprint arXiv:2303.08774, 2023.

[28] M. Caron, H. Touvron, I. Misra, H. Jégou, J. Mairal, P. Bojanowski, and
A. Joulin, “Emerging properties in self-supervised vision transformers,”
in Proceedings of the IEEE/CVF international conference on computer
vision, 2021, pp. 9650–9660.

[29] N. Hyeon-Woo, K. Yu-Ji, B. Heo, D. Han, S. J. Oh, and T.-H.
Oh, “Scratching visual transformer’s back with uniform attention,” in
Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2023, pp. 5807–5818.

828

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on June 16,2025 at 08:45:26 UTC from IEEE Xplore.  Restrictions apply. 


